The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements.
نویسندگان
چکیده
Naturally occurring soil organic compounds stabilize potentially toxic elements (PTEs) such as Cu, Cd, Pb, and Mn. The hypothesis of this work was that an insoluble glycoprotein, glomalin, produced in copious amounts on hyphae of arbuscular mycorrhizal fungi (AMF) sequesters PTEs. Glomalin can be extracted from laboratory cultures of AMF and from soils. Three different experiments were conducted. Experiment 1 showed that glomalin extracted from two polluted soils contained 1.6-4.3 mg Cu, 0.02-0.08 mg Cd, and 0.62-1.12 mg Pb/g glomalin. Experiment 2 showed that glomalin from hyphae of an isolate of Gigaspora rosea sequestered up to 28 mg Cu/g in vitro. Experiment 3 tested in vivo differences in Cu sequestration by Cu-tolerant and non-tolerant isolates of Glomus mosseae colonizing sorghum. Plants were fed with nutrient solution containing 0.5, 10 or 20 microM of Cu. Although no differences between isolates were detected, mean values for the 20 microM Cu level were 1.6, 0.4, and 0.3 mg Cu/g for glomalin extracted from hyphae, from sand after removal of hyphae and from hyphae attached to roots, respectively. Glomalin should be considered for biostabilization leading to remediation of polluted soils.
منابع مشابه
The Influence of Different Stresses on Glomalin Levels in an Arbuscular Mycorrhizal Fungus—Salinity Increases Glomalin Content
Glomalin is a glycoprotein produced by arbuscular mycorrhizal (AM) fungi, and the soil fraction containing glomalin is correlated with soil aggregation. Thus, factors potentially influencing glomalin production could be of relevance for this ecosystem process and for understanding AM fungal physiology. Previous work indicated that glomalin production in AM fungi may be a stress response, or rel...
متن کاملEnrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation
Spore counts, species composition and richness of arbuscular mycorrhizal fungi, and soil glomalin contents were evaluated in a soil contaminated with Zn, Cu, Cd and Pb after rehabilitation by partial replacement of the contaminated soil with non-contaminated soil, and by Eucalyptus camaldulensis planting with and without Brachiaria decumbens sowing. These rehabilitation procedures were compared...
متن کاملCharacterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi
Arbuscular mycorrhizal fungi (AMF) produce a protein, glomalin, quantified operationally in soils as glomalin-related soil protein (GRSP). GRSP concentrations in soil can range as high as several mg g soil, and GRSP is highly positively correlated with aggregate water stability. Given that AMF are obligate biotrophs (i.e. depending on host cells for their C supply), it is difficult to explain w...
متن کاملDensity dependence and interspecific interactions between arbuscular mycorrhizal fungi mediated plant growth, glomalin production, and sporulation
Functional differences between the arbuscular mycorrhizal fungi Glomus intraradices Schenk and Smith and Scutellospora heterogama Nicolson and Gerdemann as they affect Persea americana Mill. growth, glomalin, and fungal sporulation were examined by varying the composition and relative density of the two fungi over a gradient of available phosphorus (P). The plant benefit provided by these mycor...
متن کاملMycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage
Mycorrhizal fungi can contribute to soil carbon sequestration by immobilizing carbon in living fungal tissues and by producing recalcitrant compounds that remain in the soil following fungal senescence. We hypothesized that nitrogen (N) fertilization would decrease these carbon stocks, because plants should reduce investment of carbon in mycorrhizal fungi when N availability is high. We measure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental pollution
دوره 130 3 شماره
صفحات -
تاریخ انتشار 2004